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Outline

1. Assimilation of clouds and precipitation: background and 
challenges

2. Role of observation uncertainty and the Gaussian 
assumption

3. Characterization of non-Gaussian observation errors
4. Examples from two well-known passive remote sensing 

problems
5. Implications for assimilation of clouds and precipitation
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Background

100-fold increase in satellite data in the past decade
105 increase in the coming decade
Key role of remotely-sensed data in modern assimilation 
systems—especially in the southern hemisphere
Motivation for assimilation of clouds and precipitation

Predict hydrologic cycle with increased accuracy
Assess cloud response to and effects on climate change
Increase accuracy of long term prediction—clouds feed back to 
thermodynamic state of the atmosphere through radiation and 
latent heating
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Cloud and Precipitation Assimilation: 
Challenges

Spatial and temporal variability of clouds
Computational limitations require simple cloud and 
precipitation parameterizations
Range of spatial scales of clouds (meters to planetary)
Difficulty of establishing metrics for success
Forward models that link measurements to state variables 
are complex
Effective assimilation of cloud and precipitation 
information requires in-depth knowledge of observation 
uncertainty
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Data Assimilation:
An Optimization Problem

Combine available information to obtain an estimate x
1. Observations y
2. Relationship between observations and state y=F(x)
3. Physical nature of the system

4. Prior knowledge of the state of the system xa

Each piece of information represented 
as a probability distribution
Goal: maximize probability that state = true state 
conditioned on above information
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Assumption: Gaussian Probabilities

Estimation of P(x|y) requires 
specification of the form of each 
probability distribution
Gaussian (Normal) is the most 
straightforward

Defined by two moments: mean and 
(co)variance
Solution is easily reformulated as the 
minimum squared obs-state 
difference
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Observation Uncertainty

Ability of observations to constrain the solution depends 
on correct representation of their uncertainty
Observation uncertainty is a combination of 

Measurement uncertainty 
Uncertainty in forward model
Representativeness error

Measurement uncertainty can usually safely be assumed 
to be Gaussian in form
Nonlinear forward models produce a non-Gaussian 
probability distribution for model uncertainty
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?

Error Assumptions

Forward model must be linear for uncertainty to be Gaussian
In the case of a nonlinear forward model, need to characterize actual 
distribution

Magnitude of observation error
Departure from Gaussian form

Linear Model

Nonlinear Model



D. Posselt 12 June 2007

Characterizing the PDF

Key information
Shape (correlation, skewness)
Number of modes (nonunique solution)

Implications
Correlation—underlying relationship 
between parameters
Skewness—one set of values is favored 
over another
Multiple modes—model produces two sets 
of solutions with very similar probability

How to characterize the PDF
PDF mapping
Sampling
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Characterizing the PDF

Two options
1. Exhaustive search: run the forward 

model over the realistic range of 
each parameter in small increments
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Characterizing the PDF

Two options
1. Exhaustive search: run the forward 

model over the realistic range of 
each parameter in small increments or

2. Sample the PDF: 
Seek sets of parameters that produce 
model states that are close to 
observations
Avoid parameters that lead to states that 
are very different from observations

Computational benefit of sampling increases exponentially with the
number of parameters
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PDF Sampling: 
Markov Chain Monte Carlo

MCMC samples the conditional 
probability distribution
1. Randomly choose new parameter values
2. Run the forward model using the new 

parameter values
3. Compare the solution to observations
4. Accept the new set of parameters 

as a sample of the PDF if:
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PDF Sampling: 
Markov Chain Monte Carlo

MCMC samples the conditional 
probability distribution
1. Randomly choose new parameter values
2. Run the forward model using the new 

parameter values
3. Compare the solution to observations
4. Accept the new set of parameters 

as a sample of the PDF if:
The new state provides a better fit to observations or 
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PDF Sampling: 
Markov Chain Monte Carlo

MCMC samples the conditional 
probability distribution
1. Randomly choose new parameter values
2. Run the forward model using the new 

parameter values
3. Compare the solution to observations
4. Accept the new set of parameters 

as a sample of the PDF if:
The new state provides a better fit to observations or
The new state provides a comparable fit to the old
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PDF Sampling: 
Markov Chain Monte Carlo

MCMC samples the conditional 
probability distribution
1. Randomly choose new parameter values
2. Run the forward model using the new 

parameter values
3. Compare the solution to observations 
4. Accept the new set of parameters 

as a sample of the PDF if:
The new state provides a better fit to observations or
The new state provides a comparable fit to the old

5. Otherwise, reject the new set of parameters and perturb again from 
the old values
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PDF Sampling: 
Markov Chain Monte Carlo

Iteratively builds a sample of the underlying joint PDF
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Example: PDF Map vs. MCMC

10x fewer iterations were required for MCMC to produce 
the same image—result of algorithm not venturing into 
space with very low probability
Efficiency increases exponentially with dimension of the 
problem
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Retrievals As Examples

No numerical forecast model (or model error)
Background errors more easily dealt with
Focus on two commonly used cloud property retrieval 
techniques

Visible and near-infrared reflectance (Nakajima and King-type 
retrieval)
Infrared brightness temperatures (split window retrieval)

Both provide an estimate of cloud properties
Underlying physics differs—leads to different probability 
structures and different sources of error
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Cloud Properties I:
Visible/Near Infrared Reflectance

Visible (0.64 micron) and near-infrared (2.13 micron) 
reflectances serve as observations
Related to optical depth and effective radius, respectively
Forward model: nonlinear diffuse-scattering radiative 
transfer model

Exponential in both optical depth and effective radius 
(derived from single scatter albedo)
Two observations, two unknowns—a well-constrained 
problem
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Observations

Subset of a Terra MODIS scene
Low broken stratus and 
stratocumulus over the 
northeast Pacific Ocean
Observations: visible and near 
infrared reflectance
State: optical depth and 
effective particle radius

MODIS 0.64 micron

MODIS 2.13 micron
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Probability Distribution:
Single Pixel

PDF map reflects nature 
of forward model
Exponential form leads 
to log-normal PDF in 
both optical depth and 
effective radius
Skewness is larger for 
optical depth than for 
effective radius
Expect Gaussian 
assumption to have more 
effect on optical depth 
estimate
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Effect of Nonlinearity:
Least Squares Retrieval

Formulate retrieval in least-squares framework as cost 
function minimization

Compare retrieved Gaussian PDF with PDF sampled from 
MCMC
Assess effect of nonlinearity on the estimate
Focus on optical depth—higher degree of nonlinearity
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Effect of Nonlinearity: Bias

Least squares retrieval 
underestimates large 
optical depth values 
compared with MCMC
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Effect of Nonlinearity: Bias

Least squares retrieval 
underestimates large 
optical depth values 
compared with MCMC
Compare MCMC 
PDFs with least 
squares PDFs for 
selected pixels to 
understand why

Optical Depth in 
Selected 5x5 Pixel Region
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Effect of Nonlinearity: Bias

As in single pixel 
estimate, PDFs of 
optical depth are log-
normal
Solution is well-
constrained for low 
optical depths; large 
information content in 
the observations
At optical depths > 50, 
solution collapses to 
uniform distribution; 
small information 
content
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Solution: Variable Transform

Retrieve the natural log of the optical depth
Increased sensitivity to large optical depths, sensitivity to low values 
is retained 

Implications: least squares yields an acceptable result even for a 
nonlinear forward model if

Observation information content is large relative to the error
Nonlinearity does not produce multiple modes
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Cloud Properties II:
Split Window

Observations: brightness temperature at 10.8 and 12 
micron infrared wavelengths
State: ice water path (function of optical depth) and 
effective radius (function of single scatter albedo)
Well-constrained problem: 2 unknowns, 2 measurements
Scene: Warm Front over West Atlantic Ocean
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Forward Model and Background Fields

Two physical processes to be modeled
Gaseous absorption: OPTRAN
Scattering and absorption by clouds: Successive Order of 
Interaction (SOI) model

Skin temperature and temperature, water vapor, and 
ozone profiles from CloudSat data stream
Cloud top height and geometric thickness from CloudSat
reflectivity (uncertainty of  +/- 500 meters)
Forward model is weakly nonlinear in both optical depth 
and effective radius (depends on cloud thickness)
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Split Window PDF 

Effective radius and ice 
water path are correlated
Nonlinearity evident in 
skewness along 
correlation, as well as in 
curvature of relationship
Well-defined mode, given:

Skin temperature
Cloud top temperature
Cloud thickness
Crystal shape
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Split Window:
Additional Sources of Error

Well-known errors associated with cloud top height, 
geometric thickness, ice crystal shape
MCMC allows examination of each source of error
Divide error sources and examine each individually
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Split Window Errors:
Cloud Top Height

Range of cloud top height: +/- 2 km (~ +/- 8 K)
Errors in cloud top height contribute most of the error
Bimodal structure evident—note that neither lies along the 
axis of the true mode
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Split Window Errors:
Cloud Geometric Thickness

Range of geometric thickness: +/- 2 km
Geometric thickness variations contribute a moderate 
amount of error
PDF width increases over entire range of IWP and 
effective radius
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Split Window Errors:
Crystal Shape

Three crystal shapes: columns, aggregates, droxtals
Uncertainty in crystal shape leads to broadening along the 
axis of correlation
Secondary mode is evident at low effective radius/IWP
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Error Correlations

MCMC samples the full joint PDF of all uncertain quantities
Any metrics can be computed from the sample
Relationships between variables can be clearly seen

Effective radius and ice water path are strongly related and nearly linearly 
correlated
Cloud top height correlates with both ice water path and effective radius
Effective radius and ice water path both exhibit skewness
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Implications for 
Cloud and Precipitation Assimilation
Modern data assimilation techniques assume linear (or 
nearly linear) forward model

Requirement of minimization
Tangent linear and adjoint model

Assimilation of cloud properties from passive instruments
Simple relationship between radiances and cloud properties
In absence of forward model error, nonlinearity is not large in 
region of maximum likelihood
Variable transform can eliminate effect of nonlinearity
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Implications for 
Cloud and Precipitation Assimilation
Effect of forward model error

Visible/Near-Infrared: multiple possible solutions in ice cloud case 
due to different crystal shapes
Split window: multiple possible solutions result from cloud top 
temperature uncertainty and different crystal shape

Solution: add information to reduce uncertainty
Additional channels to characterize liquid vs. ice
LIDAR/radar estimates of cloud top height and thickness
Physical nature of the system can be used to approximate particle 
shape (e.g., temperature-crystal shape relationships)
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Summary

Effective assimilation of observations depends on correct 
specification of observation uncertainty
Uncertainty is a combination of forward model and 
measurement
Nonlinear forward models produce non-Gaussian 
probability distributions
PDF mapping can be used to characterize PDFs, but is 
inefficient
Markov chain Monte Carlo methods provide a robust and 
efficient method for sampling the full joint observation 
PDF
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Key Questions

Impact of assimilation of cloud properties?
Need for assimilation of cloud/precipitation statistics? 
How to best utilize cloud profile observations (CloudSat, 
TRMM, NEXRAD)?

Cloud boundaries?
Variation in cloud content with height?

Quantitative metrics for evaluating simulations of clouds 
and precipitation?

Situation dependent?
Related to the public good
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